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Abstract 

Accurate identification of high-quality ECG data is 
crucial for reliable cardiac rhythm assessment, 
particularly in ambulatory settings. This study presents a 
machine learning-based signal quality assessment 
algorithm designed to address the challenges of ECG 
signal classification in diverse and real-world 
environments. The algorithm prioritises sensitivity, 
effectively identifying actionable ECG segments while 
minimising the risk of discarding critical clinical data. 
Trained and validated on a wide range of public and 
proprietary ECG datasets, the algorithm maintains a 
consistently high sensitivity (>98%) across various device 
types, patient demographics, and recording environments. 
Our results highlight the algorithm's utility as a 
generalisable signal quality triage tool, with the potential 
to reduce burden on clinicians and enhance the efficiency 
of ECG analysis in clinical practice. 
 
1. Introduction 

Single-lead ECGs, utilised in Holter monitors, wearable 
patches, and handheld devices, are favoured for cardiac 
rhythm assessment in the ambulatory setting due to their 
portability and convenience [1]. However, persistent 
patient movement and environmental interference can lead 
to exacerbated noise in out-of-hospital ECG monitoring, 
degrading signal quality and making it difficult to identify 
the variations in waveform timing and sequence that are 
indicative of arrhythmia. As a result, clinicians must 
manually scan ECG recordings to locate actionable 
segments of sufficient quality for further processing or to 
reliably inform clinical decisions; a laborious task that 
adds substantial burden to the diagnostic pathway. In cases 
where high-quality data does not coincide with the timing 
of paroxysmal events, interpreters face a difficult scenario 
where they must either diagnose based on poor-quality 
data, risking diagnostic errors, or disregard the data, 
potentially leading to missed or delayed diagnoses. 

Traditionally, ECG noise has been addressed by 
employing various filters across multiple time and/or 
frequency domains, with more recent methods 
incorporating adaptive, data-driven filtering approaches 
[2]. While denoising strategies have proven effective at 

recovering data even in the presence of moderately high 
noise levels, significant proportions of ambulatory 
recordings are often so severely corrupted that they cannot 
be restored without significantly distorting the signal’s 
morphology. The indiscriminate application of filters to 
entire ambulatory recordings without clarifying the quality 
of the input signal is therefore problematic as distorted 
signals can lead to interpretive error for both clinicians and 
automated ECG software [3,4]. 

An alternative approach to manage noise-corrupted data 
is to supplement ECG denoising with signal quality (SQ) 
assessment algorithms that can detect and triage regions 
with sufficient quality for subsequent analysis. This 
approach not only reduces the review burden of low-
quality data but also minimises the risk of erroneous 
interpretations that could arise from noisy signals. The 
development of ECG SQ assessment methods gained 
considerable momentum following the PhysioNet 
Computing in Cardiology (CinC) Challenge 2011, which 
focused on developing real-time quality assessment 
methods for mobile applications [5]. Research in this area 
has advanced considerably in recent years, exploring a 
variety of parameters, including statistical, morphological, 
nonlinear, or time-frequency domain features, among 
others, to serve as indicators of signal quality [6]. Early 
classifier models primarily relied on rule-based systems, 
which segmented signal quality based on predefined 
thresholds. However, more recently, machine learning 
(ML) techniques have introduced more sophisticated, data-
driven models that possess superior performance, 
particularly in the presence of noise [7]. 

While these advancements are promising, the efficacy 
of ML-based SQ algorithms is heavily dependent on the 
diversity of the datasets used in development. Many 
studies have employed training datasets with limited size, 
often derived from homogeneous populations or controlled 
environments, which limits the generalisability of these 
models [8]. Such limited datasets fail to capture the 
variability in ECG signals due to differences in 
demographics, pathology, and recording environments, 
leading to models that perform well in controlled settings 
but struggle when applied to real-world populations. 

In this study, we present an ML-based SQ algorithm 
designed to address the challenges of identifying 
actionable ECG data in diverse ambulatory settings.
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2. Methods 

2.1. ECG Pre-Processing 

Signals were processed with HeartKey, a cloud-based 
ECG processing platform that employs a series of iterative, 
logic-based digital filters for denoising, including: a mains 
subtraction filter with adaptive harmonic estimation to 
cancel interference at 50/60 Hz, a low-pass filter to remove 
noise above the standard 40 Hz ambulatory cut-off, and a 
baseline and smoothing filter featuring dynamic 
components to address non-stationary noise interference. 

 
2.2. Feature Extraction 

The model utilises a total of 26 statistical and spectral 
features derived from both raw and denoised ECG signals 
for quality assessment. The statistical measures include the 
mean, mean absolute deviation, median absolute deviation, 
standard deviation, kurtosis, skewness, and the skewness-
kurtosis ratio, among others [9]. In the frequency domain, 
the model analyses power distribution across six 
characteristic frequency bands: 0-1 Hz (baseline wander), 
1-5 Hz (low-frequency motion or P/T waves), 5-15 Hz 
(QRS complex and P/T waves), 15-25 Hz (QRS complex), 
25-40 Hz (high-frequency muscle noise), and 40-100 Hz 
(high-frequency noise and powerline interference). 
 
2.3. Classification 

The extracted features are provided to an ML model that 
utilises a bagged classification tree method, consisting of 
30 trees with a maximum of 50,000 splits per tree. The 
model employs feature extraction and comparative 
statistical analysis of both raw and processed signals to 
classify each consecutive two-second ECG segment as 
either high or low signal quality (Figure 1). 

Figure 1. ML signal quality classification model using 
bagged classification tree method.  

2.4. Training Datasets 

The model was trained using both statistical and spectral 
features on: i) several publicly available Physionet datasets 
(BRNO-QDB, BRNO P-wave, LUDB, MIT-BIH NST, 
MIT-BIH Long); ii) a number of proprietary ECG 
databases acquired on a variety of medical (Holter, patch) 
and consumer (smartwatch, handheld, chest strap) devices; 
and iii) single-lead, dry electrode records from the 
PhysioNet/CinC Challenge 2017 [10] corrupted with 
various levels of synthetic ECG noise (i.e., baseline 
wander, electrode motion, muscle artefact and powerline 
interference). To address class imbalance, the Synthetic 
Minority Over-sampling Technique (SMOTE) was applied 
to ensure an equal number of samples within each 
class [11]. 
 
2.5. Validation Databases 

Algorithm performance was evaluated using three 
diverse datasets, representing a range of devices, lead 
types, cardiac pathologies, and varying intensities and 
combinations of ECG noise: i) leads I-III of the PhysioNet 
Computing in Cardiology (CinC) 2011 Challenge dataset 
(998 x 10 s files), ii) a proprietary database of lead III 
Holter ECGs with known periods of leads ON and OFF (80 
x 10 min files); and iii) a database of modified lead III 
(MLIII) and sternum-lead recordings collected by the 
Beacon Hospital (80 x 5-30 min files) (Table 1). 
 

Table 1. Validation datasets overview. 
 

Dataset Leads Patients 
(Files) 

Total 
duration 

Low quality 
(%) 

PCINC 
2011 I-III 998 (998) 166 min 13.7 

Holter 
Leads 

ON/OFF 
III 17 (30) 245 min 45.1 

Beacon 
Hospital 

MLIII/ 
Sternum 70 (80) 800 min 2.5 

Total  1,085 
(1,108) 

1,211 
min 20.4 

 
2.6. Performance Evaluation 

Reference quality annotations were manually generated 
for signals from each individual lead in two-second 
segments on the PhysioNet/CinC (PCINC) 2011 dataset, 
and continuously for the Holter Leads ON/OFF and 
Beacon Hospital datasets, by two ECG analysts, with 
discrepancies resolved by a third, more-experienced 
analyst, using the following criteria: Low signal quality: 
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QRS complexes cannot be detected reliably. High signal 
quality: All QRS complexes are clearly identifiable. An 
example of the signal quality classifications provided by 
HeartKey is shown in Figure 2. 
 

 
Figure 2. An example of HeartKey Signal Quality 

classification relative to manual reference annotation on a 
signal from the Holter Leads ON/OFF database. 

 
The algorithm’s ability to correctly classify high signal 

quality was assessed using duration sensitivity (Se) and 
specificity (Sp) metrics, calculated relative to reference 
annotations. Duration statistics were chosen over episode 
statistics because they more effectively reflect the length 
of an ECG recording as being clinically actionable. This is 
crucial when using SQ algorithms as a triage tool on 
extended ambulatory recordings given that the duration of 
a single noise event can vary significantly. 
 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑆𝑆𝑆𝑆 =  
(𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) 

(𝐹𝐹𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) + (𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) 
 

 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑆𝑆𝑆𝑆 =  
(𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) 

(𝐹𝐹𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) + (𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)  

 
Where true positive (TP) = correct classification of a 

high quality segment; false positive (FP) = incorrect 
classification of a low quality segment; true negative (TN) 
= correct classification of a low quality segment; false 
negative (FN) = incorrect classification of a high quality 
segment. 
 
3. Results  

The high signal quality classification performance 
results are shown in Table 2. The HeartKey SQ algorithm 
maintained a high signal quality duration Se > 98% on the 
three test databases. A mean duration Sp of 79% was 

achieved across leads I-III of the PhysioNet CinC 
Challenge 2011 database, and 92% on the Holter Leads 
ON/OFF database. A lower Sp of 53% was obtained on the 
Beacon Hospital database, which was attributed to the low 
proportion of low quality data within the dataset (2.5%). 

 
Table 2. High signal quality classification performance on 

validation databases. 
 

Dataset Duration 
Se (%) 

Duration 
Sp (%) 

PCINC 2011 (Lead I) 99 82 

PCINC 2011 (Lead II) 98 83 

PCINC 2011 (Lead III) 98 72 

Holter Leads ON/OFF 98 92 

Beacon Hospital 99 53 

Average 98.4 76.4 

 
A consistently high duration Se ensured that instances 

where the algorithm erroneously classified high quality 
data as low signal quality were minimal. Analysis showed 
that most instances of high quality misclassifications were 
due to short bursts of noise. Figure 3 shows that in the 
Holter Leads ON/OFF and MLIII/Patch databases, 63.1% 
of high quality misclassifications were on events of 
2 seconds or less, with only 17.5% and 1.8% of 
misclassifications on events longer than 5 or 10 seconds, 
respectively.  
 

 
 

Figure 3. Scatter plot showing the duration of high quality 
ECGs misclassified as low quality in the Holter Leads 

ON/OFF and Beacon Hospital datasets. 
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4. Discussion 

A key challenge in the development of ECG SQ 
assessment methods is achieving the optimal balance 
between sensitivity – an algorithm’s ability to correctly 
identify high-quality segments – and specificity, which 
ensures the accurate exclusion of noise-corrupted data. The 
HeartKey SQ algorithm is designed with an intentional 
bias towards higher sensitivity, making it particularly 
effective as a triage tool. By prioritising sensitivity, the 
algorithm minimises the risk of discarding actionable data 
while filtering out clearly unusable segments, thereby 
reducing the low quality ECG review burden on 
interpreters. 

The emphasis on sensitivity does result in a lower, 
though still acceptable, specificity, where some low quality 
signals may be incorrectly classified as suitable for review. 
In practice this trade-off is justified by the algorithm’s 
primary goal of minimising the risk of missing crucial 
clinical data, such as paroxysmal arrhythmias, through 
erroneous exclusion of actionable data. This sensitivity-
focused design contrasts with other multi-level 
classification algorithms, which are primarily used as 
confidence measures to distinguish between artefact and 
ECG on a beat-to-beat level, where a more balanced 
performance between sensitivity and specificity is 
required. 

The training and validation of the HeartKey SQ 
algorithm on diverse ECG datasets, encompassing various 
recording environments, device types, and patient 
demographics, ensures that the algorithm can reliably 
perform across different real-world scenarios. In 
combination with the tailored balance in performance, the 
diversity in training and validation confirms HeartKey’s 
utility as a generalisable triage tool for ECG signal quality 
assessment that can maintain a consistent performance 
with minimal risk of errors in varied clinical contexts. 
 
5. Conclusions 

The HeartKey SQ algorithm offers a solution for ECG 
signal quality assessment in ambulatory settings, where 
noise and artefacts are common. By prioritising sensitivity, 
the algorithm effectively identifies high-quality ECG 
segments, reducing the risk of missing crucial clinical data 
like paroxysmal arrhythmias and easing the review burden 
on clinicians. While this sensitivity focus results in a lower 
specificity, the trade-off is justified by the algorithm's role 
as a triage tool. Crucially, the algorithm’s training and 
validation on diverse ECG datasets ensure reliable 
performance across various recording environments, 
device types, and patient demographics, making it a 
versatile and generalisable tool for real-world clinical 
applications. 
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