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Abstract
Background: Electrocardiogram	 (ECG)	signal	conditioning	 is	a	vital	 step	 in	 the	ECG	
signal processing chain that ensures effective noise removal and accurate feature 
extraction.
Objective: This	study	evaluates	the	performance	of	the	FDA	510	(k)	cleared	HeartKey	
Signal Conditioning and QRS peak detection algorithms on a range of annotated pub-
lic	and	proprietary	ECG	databases	(HeartKey	is	a	UK	Registered	Trademark	of	B-	Secur	
Ltd).
Methods: Seven	hundred	 fifty-	one	 raw	ECG	 files	 from	a	broad	 range	of	use	cases	
were	 individually	passed	through	the	HeartKey	signal	processing	engine.	The	algo-
rithms include several advanced filtering steps to enable significant noise removal and 
accurate identification of the QRS complex. QRS detection statistics were generated 
against	the	annotated	ECG	files.
Results: HeartKey	 displayed	 robust	 performance	 across	 14	 ECG	 databases	 (seven	
public,	seven	proprietary),	covering	a	range	of	healthy	and	unhealthy	patient	data,	wet	
and dry electrode types, various lead configurations, hardware sources, and station-
ary/ambulatory recordings from clinical and non- clinical settings. Over the NSR, MIT- 
BIH,	AHA,	and	MIT-	AF	public	databases,	average	QRS	Se	and	PPV	values	of	98.90%	
and	99.08%	were	achieved.	Adaptable	performance	 (Se	93.26%,	PPV	90.53%)	was	
similarly	 observed	 on	 the	 challenging	 NST	 database.	 Crucially,	 HeartKey's	 perfor-
mance effectively translated to the dry electrode space, with an average QRS Se of 
99.22%	and	PPV	of	99.00%	observed	over	eight	dry	electrode	databases	representing	
various use cases, including two challenging motion- based collection protocols.
Conclusion: HeartKey	demonstrated	 robust	 signal	 conditioning	and	QRS	detection	
performance	across	the	broad	range	of	tested	ECG	signals.	It	should	be	emphasized	
that in no way have the algorithms been altered or trained to optimize performance on 
a	given	database,	meaning	that	HeartKey	is	potentially	a	universal	solution	capable	of	
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1  |  INTRODUC TION

Cardiovascular	Disease	 (CVD),	 an	 umbrella	 term	encompassing	 an	
array of disorders affecting the heart and blood vessels, is the leading 
cause of death worldwide and a significant burden on global health 
care.(World	Health	Organisation	(WHO),	2021)	Early	detection	and	
monitoring	of	CVDs	is	crucial	as	it	allows	the	identified	conditions	to	
be treated and appropriate medical precautions to be established. 
Due to the wealth of physiological information derived from the 
heart's	electrical	signal,	electrocardiography	is	among	the	most	ef-
fective diagnostic tools available to aid clinicians in the fight against 
CVD.	Although	once	restricted	to	clinical	settings,	integrating	ECG	
functionality into portable devices allows healthcare professionals 
to continuously monitor cardiac function remotely over extended 
periods. The ambulatory approach is compelling and is becoming 
increasingly valuable in diagnosing and managing cardiac arrhyth-
mias,	 including	 atrial	 fibrillation	 (AF),	 which	manifest	 infrequently	
and inconsistently. (Sana et al., 2020)	Being	able	 to	accurately	ex-
tract the relevant physiological information from patients amidst the 
background noise of a non- clinical, unstable environment is vital to 
ensure no further increases in burden to the clinical pathway.

Electrocardiogram	 (ECG)	 signals	 are	 characterized	 by	 five	 key	
features	(P,	Q,	R,	S	and	T	waves)	pertaining	to	the	direction	of	elec-
trical signal propagation through the heart at various stages of the 
cardiac	 cycle.	 Variations	 in	 these	 characteristic	 waveforms'	 mor-
phology,	 orientation	 and	 frequency	 can	 indicate	 various	 cardiac	
conditions, such as arrhythmias and ischemic heart disease, among 
others.	Computer-	aided	ECG	algorithms	that	process,	interpret	and	
autonomously diagnose cardiac abnormalities have emerged as 
powerful tools to support manual diagnosis by specialists. The QRS 
complex, which represents ventricular depolarization, is the most 
prominent	waveform	in	the	ECG	and	the	easiest	for	algorithms	to	de-
tect	due	to	its	high	amplitude.(do	Vale	Madeiro	et	al.,	2019)	Accurate	
and reliable algorithmic detection of the QRS complex is crucial as 
it	serves	as	the	basis	from	which:	(a)	other	characteristic	waveforms	
(P	&	T	waves)	in	the	ECG	can	be	identified,	and	(b)	critical	diagnostic	
parameters can be derived. The efficient and accurate extraction of 
the latter is essential as such information acts is the foundation from 
which more complex algorithms can be constructed. For instance, 
beat	to	beat	(R-	R)	intervals	are	obtained	by	measuring	the	time	be-
tween correctly detected QRS signals and can be used to calculate 
heart	rate	(HR),	heart	rate	variability	(HRV)	and	act	as	an	input	for	
arrhythmia detection algorithms.

Although	 clinical	 recording	 protocols	 are	 standardized,	 QRS	
signal morphology can vary significantly from patient to patient.
(Corrado et al., 2009; Rijnbeek et al., 2014)	To	maximize	compatibil-
ity with QRS detection algorithms, minimizing noise contamination 
on	the	ECG	signal	 is	essential	as	 it	allows	the	QRS	complex	to	be	
readily distinguished. Noise contamination can arise from various 
sources,	including	50/60 Hz	power	line	interference,	the	electrode-	
skin interface, muscle activity, and general motion artifact noise 
induced	by	 patient	movement.	 In	 the	 context	 of	 automated	ECG	
detection algorithms, noise artifacts are especially problematic 
as	 they	 can	 trigger	 false-	positive	 events	 that	 obscure	 valid	 ECG	
metrics.

As	 automated	 detection	 algorithms	 become	 more	 common,	
there	 is	 a	 clear	 need	 to	 input	 high-	quality	 data	 to	 ensure	 they	
function to a high- performance level. This need is exacerbated 
in ambulatory monitoring applications, as the levels of noise ar-
tifacts produced during daily activities are significantly greater 
than in a hospital setting.(Kumar et al., 2018)	Effective	signal	con-
ditioning	algorithms	must	be	carefully	designed	to	ensure	that;	(a)	
noise artifacts are not falsely classified as QRS complexes, and 
(b)	 true	QRS	complexes	are	not	 removed	alongside	noise	during	
filtering steps. Noise artifacts can obstruct the distinction of 
true QRS complexes, potentially leading to the missed detection 
of an important pathological event that can delay or prevent the 
diagnosis of a cardiac abnormality. Therefore, an effective signal 
conditioning	step	must	follow	the	acquisition	of	raw	ECG	data	to	
remove	excess	noise	and	output	ECG	signals	from	which	the	QRS	
can be correctly identified, and critical diagnostic parameters 
obtained.

Despite the plethora of QRS detection algorithms introduced 
over the past few decades, there still lacks a universal algorithm ca-
pable of operating with high accuracy across the wide range of clin-
ically	relevant	use	cases.	In	this	study,	we	introduce	the	HeartKey®	
Signal Conditioning and QRS Detection algorithms and evaluate 
their	performance	on	a	 total	of	14	ECG	databases,	chosen	to	rep-
resent	 the	 inevitable	variability	 in	signal	quality	of	 real-	world	ECG	
data.	 Across	 the	 broad	 range	 of	 use	 cases,	 3,135,366	 annotated	
beats	were	analyzed	in	total.	HeartKey	demonstrated	highly	adapt-
able QRS detection accuracy and positive predictivity in all cases. 
Due	 to	 the	 low	 memory	 footprint	 and	 processing	 requirements	
of the algorithm, it has the potential to be employed in a host of 
ECG	monitoring	 applications,	 both	 inside	 and	 outside	 of	 a	 clinical	
environment.

maintaining a high level of performance across a broad range of clinical and everyday 
use cases.

K E Y W O R D S
artifact	removal,	ECG,	noise	filtering,	QRS	detection,	signal	conditioning,	signal	processing
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2  |  METHODS

2.1  |  HeartKey algorithm overview

HeartKey	QRS	Detection	and	Heart	Rate	algorithms	are	FDA	510	
(k)	cleared	as	a	Class	II	medical	device.	Operationally,	the	algorithms	
consist of several distinct stages, detailed in Figure 1, designed to 
produce	reliable	and	robust	performance	from	raw	ECG	data	across	
a	range	of	ECG	lead	configurations	and	hardware	sources.	The	input	
signal is initially processed through a signal filtering step that has 
been fine- tuned to operate on signals from various electrode ma-
terials and hardware sources. This ensures that the variation in sig-
nal	quality	associated	with	both	methods	 is	 adequately	dealt	with	
and that the information to be extracted from the processed data 
is	accurate,	reliable	and,	therefore,	valuable	at	a	clinical	level.	After	
filtering, a clean signal is fed through the QRS detection algorithm. 
Upon successful identification of the QRS locations, an R- R interval 
series	can	be	calculated.	This	feeds	into,	among	others,	the	HR	algo-
rithm.	Throughout	the	process,	 the	HeartKey	algorithms	employ	a	
variety of methods to assess each calculated metric for validity; this 
ensures robustness and accuracy on even the noisiest of signals. The 
HeartKey	algorithms	will	also	assess	and	provide	an	indicator	of	the	
ECG	signal	quality,	only	outputting	a	HR	value	if	the	signal	is	deemed	
to	be	of	sufficient	quality.

2.2  |  wet electrode ECG data overview

Five public PhysioNet wet electrode databases were chosen to 
evaluate	 the	 performance	 of	HeartKey	QRS	Detection	 and	 Signal	
Conditioning	algorithms:	the	NSR	database,	the	MIT-	BIH	database,	
the	MIT-	AF	 database,	 the	 AHA	 database,	 and	 the	 NST	 database.
(Goldberger	et	al.,	2000)	The	respective	databases	include	179	raw	
ECG	files,	3,086,647	annotated	beats,	with	a	variety	of	healthy	and	
unhealthy	patients	and	ECG	morphologies	on	both	clean	and	noisy	
signals.	The	databases	were	tested	in	line	with	the	AAMI/ANSI	EC57	
standard	 (CENELEC	 -		EN	60601–	2-	27,	2014)	–		 a	medical	 standard	
that pertains to a “protocol for a reproducible test with clinical re-
quirements	 and	 emphasizes	 the	 record-	by-	record	 presentation	 of	
results;	that	reflect	an	algorithm's	ability	to	detect	events	of	clinical	

significance.” Proprietary wet electrode data were also collected on 
an	 industry	 gold	 standard	 ambulatory	 device	 (Bittium	 Faros	 180)
(Bittium, 2018)	using	a	wet	electrode	lead	II	configuration.

2.3  |  Dry electrode ECG data overview

To	 demonstrate	 the	 applicability	 of	 the	 HeartKey	 Signal	
Conditioning and QRS Detection algorithms for integration into 
the	 ever-	increasing	 range	 of	 ECG-	functionalized	 dry	 electrode	
hardware,	ECG	data	originating	from	a	variety	of	devices	and	chal-
lenging collection protocols, including walking, and running, were 
used.	 This	 database	 represents	 the	 real	 world,	 where	 ECGs	 are	
performed in various settings, through various methods, by various 
operators, which ultimately results in a significant variation of sig-
nal	quality.	Challenging	signals	 in	 the	database	 include	those	with	
a	significant	degree	of	high	frequency	noise,	motion	artifacts,	 low	
QRS amplitude, irregular rhythms, and variable beat morphologies. 
Performance	on	this	dry	electrode	ECG	data	was	evaluated	against	
manual peak annotations and where appropriate, compared to data 
collected on an industry gold standard ambulatory wet electrode 
device	(Bittium	Faros	180).

2.4  |  ECG data annotation

With	 the	exception	of	 the	MIT-	AF	database,	PhysioNet	databases	
have been independently annotated by cardiologists and the perfor-
mance	of	HeartKey	was	generated	against	these	annotations.	Beat	
annotations	for	the	MIT-	AF	DB	were	generated	by	a	minimum	of	two	
separate annotators using a computer- based annotation tool. This 
was followed by a group review of any outstanding annotations, dur-
ing which highlighted discrepancies were resolved. Proprietary dry 
electrode databases were manually annotated by board- certified 
cardiologists. Databases were annotated individually, followed by a 
similar group review to ensure agreement on annotations for chal-
lenging	signals.	As	manual	annotation	is	the	gold	standard	for	ECG	
performance analysis, these annotations were used as a criterion by 
which	the	HeartKey	Signal	Conditioning	algorithm	and	QRS	detec-
tion performance was compared.

F I G U R E  1 Flow	of	ECG	data	through	HeartKey	algorithm(s)
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2.5  |  Data processing

Each	 ECG	 file	 was	 individually	 processed	 through	 the	 HeartKey	
Signal Conditioning algorithm. QRS Detection results were gen-
erated	 using	 PhysioNet	 WFDB	 programs	 bxb	 and	 sumstats.	 As	
standard QRS accuracy measurements employ a wide error win-
dow (+/−	150 ms),	the	precise	location	of	detection	within	the	QRS	
complex is not important, only that this location remains consistent 
from beat to beat. Looking at this in isolation could mask variation in 
where the algorithm picks up the beat. It is, therefore, beneficial to 
include	HR	accuracy	measurements.	Many	measurements	exist	for	
HR,	and	none	are	universally	accepted.	As	recommended	in	Section	
4.3.3.1	of	ANSI	EC57,	HR	statistic	reference	annotation	files	were	
created	for	each	record,	calculating	the	HR	from	the	reference	beat	
annotations with the same method used in the device. The compari-
son	will	generate	the	Root	Mean	Square	Heart	Rate	Error	to	meas-
ure	 the	 error	 between	 the	 reference	 and	 test	 annotations.	 Heart	
Rate Error statistics are generated using WFDB programs mxm and 
sumstats.

2.6  |  Performance metrics

There are four outcomes in which the detector is presented with an 
input that is either an event or a non- event:

•	 True	positive	(TP)	is	an	event	detected	correctly*.
•	 False-	negative	(FN)	is	a	missed	event*.
•	 False-	positive	(FP)	is	a	non-	event	detected	as	an	event.
•	 True	negative	(TN)	is	a	non-	event	correctly	rejected.

*A	correctly	detected	event	 is	defined	as	a	QRS	detection	 lo-
cation	within	150 ms	of	the	QRS	annotation,	as	stated	within	ANSI	
(AAMI	 EC67-	2012)	 standards.	 If	 QRS	 detection	 is	 outside	 the	
150 ms	window,	the	beat	is	missed	and	classified	as	a	false-	negative.

The most common detector performance measures are sen-
sitivity	 (Se)	 and	positive	predictive	value	 (PPV),	 as	detailed	below.	
Sensitivity relates to the ability of the algorithm to identify true 
events	correctly	and	is	calculated	using	the	following	equation:

PPV	 relates	 to	 the	 algorithm's	 ability	 to	 avoid	 incorrectly	 detecting	
false	events	and	is	calculated	using	the	following	equation:

Root	Mean	Square	HR	Error	allows	comparison	of	the	HeartKey	HR	
information relative to the reference value.

3  |  RESULTS AND DISCUSSION

3.1  |  HeartKey performance on wet electrode data

Numerous algorithms have reported excellent performance sta-
tistics (>99%	 QRS	 Se	 &	 PPV)	 on	 databases	 for	 which	 they	 have	
undergone	 a	 learning	 period,(Cai	 &	 Hu,	 2008; Xiang et al., 2018; 
Xue et al., 1992)	 or	 when	 designed	 to	 give	 optimal	 performance	
on a given database.(Farashi, 2016; Pan & Tompkins, 1985; Rahul 
et al., 2021)	Without	 cumbersome	 training	 periods,	 relatively	 few	
algorithms have been reported to retain a high performance across 
multiple databases with different morphologies, cardiac conditions, 
and	signal	qualities.(Dotsinky	&	Stoyanov,	2004; Kim & Shin, 2016; 
Kunzmann et al., 2002)	HeartKey	Signal	Conditioning	and	QRS	de-
tection algorithms were initially evaluated on five public PhysioNet 
databases:	NSR	DB,	MIT-	BIH	DB,	AHA	DB,	MIT-	AF	DB	and	NST	DB.	
The	majority	of	ECG	data	in	these	databases	was	collected	using	a	
wet electrode- modified limb lead II setup. Each database possesses 
inherent	 challenges	 for	 the	HeartKey	algorithm	 to	overcome,	out-
lined in Figure 2.

The	NSR	database	contained	ECG	data	with	high	signal	quality	
and no significant arrhythmias and was included to demonstrate 
the	performance	of	HeartKey	on	optimal	wet	electrode	ECG	data.	
HeartKey	 achieved	 QRS	 detection	 Se	 and	 PPV	 of	 99.84%	 and	
99.40%,	respectively,	on	this	healthy	dataset.	MIT-	BIH	is	a	bench-
mark	database	of	ambulatory	ECG	recordings	containing	various	
arrhythmias and cardiac abnormalities. It is by far the most fre-
quently	used	database	to	validate	the	performance	of	signal	con-
ditioning algorithms in the literature.(Moody & Mark, 2001)	 For	
this	study,	Channel	I	of	each	recording	was	analyzed.	The	5-	minute	
training period at the beginning of each record was excluded from 
analysis	as	HeartKey	does	not	require	a	learning	phase.	The	AHA	
database	is	another	popular	public	ECG	database	that	contains	a	
range of rhythms, including NSR, alongside numerous less com-
mon arrhythmias. Over the two databases, virtually all significant, 
clinically relevant arrhythmias are covered, ranging from mild 
conditions, such as tachycardia, to life threatening heart rhythms 
like ventricular fibrillation. This gives an excellent indication of 
HeartKey's	performance	on	 the	wide	 array	of	 real-	world	 clinical	
ECG	data.	On	both	databases,	HeartKey	achieved	>99.60%	QRS	
PPV.	QRS	Se	performance	values	of	98.96%	and	97.43%	were,	re-
spectively,	obtained	for	MIT-	BIH	and	AHA	databases.	When	con-
sidering	the	clinical	impact	97%	QRS	Sensitivity	would	have	in	the	
“worst	case”	scenario	(at	a	maximum	HR	of	200 bpm),	this	equates	
to	approximately	2–	3	missed	or	extra	beats	within	a	30s	recording.	
In relation to arrhythmia detection applications, this would not be 
deemed to be clinically significant.(Bouzid et al., 2022)	 RMS	HR	
error	values	of	1.09%	and	1.93%	were	achieved,	respectively,	for	
the	MIT-	BIH	and	AHA	databases.

Although	MIT-	BIH	 and	AHA	databases	 do	 contain	 ambulatory	
ECG	records,	 these	datasets	are	among	numerous	other	recording	
protocols. This means that the average QRS detection statistics are 
not	 truly	 representative	 of	HeartKey	 performance	 on	 ambulatory	

Se (%) =

(

TP

TP + FN

)

× 100

PPV (%) =

(

TP

TP + FP

)

× 100

RMSE =

√

√

√

√

N
∑

i=1

(Actual HR−Annotated HR)
2
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    |  5 of 9GIBBS et al.

data, which can be considerably more challenging due to inherent 
noise contamination through patient movement. To demonstrate 
the	 utility	 of	 HeartKey	 on	 ambulatory	 wet	 electrode	 ECG	 data,	
the	MIT-	AF	 database,	 which	 contains	 long	 term,	 continuous	 ECG	
data	 from	patients	diagnosed	with	atrial	 fibrillation	 (AF),	was	next	
analyzed.	HeartKey	 achieved	QRS	 Se	 of	 99.38%	 and	QRS	PPV	of	
97.37%	on	this	ambulatory	dataset.	To	further	highlight	the	high	per-
formance	of	HeartKey	on	Holter	wet	electrode	data,	a	proprietary	
dataset	was	collected	on	healthy	subjects	using	a	Bittium	Faros	180,	
a gold standard ambulatory recording device. Similar performance 
statistics were achieved on this dataset with an average QRS Se and 
PPV	of	99.86%	and	99.66%.

The	 ability	 of	 HeartKey	 to	 successfully	 detect	 the	 QRS	 com-
plex amidst various levels of noise was evaluated using the Noise 
Stress	Test	 (NST)	database.	 In	this	public	dataset,	artificial	noise	is	
overlayed	on	two	clean	ECG	signals	from	the	MIT-	BIH	Database	(re-
cords	118	and	119),	to	emulate	baseline	wander,	muscle	movement	
artifacts	and	electrode	motion	artifacts.	HeartKey	achieved	a	QRS	
Se	of	93.26%	and	PPV	of	90.53%	on	the	NST	DB.	Understandably,	

performance is lower than the other four PhysioNet databases de-
tailed in Table 1;	however,	HeartKey	still	performed	well	even	with	
the extreme presence of noise. Individual records from the NST da-
tabase were analyzed to determine the level of noise at which the 
performance of the algorithm becomes significantly affected. QRS 
Se	 and	 PPV	 performance	 values	 remain	 above	 99%	 for	 signal-	to-	
noise	ratio	(SNR)	levels	as	low	as	12 dB.	At	an	SNR	of	6	dB,	the	av-
erage	Se	 and	PPV	 reduce	 to	98.26%	and	95.18%,	 respectively.	At	
0	dB	and − 6	dB,	the	performance	deteriorates	markedly	when	noise	
becomes	equal	to	or	greater	than	the	ECG	signal.

3.2  |  HeartKey performance on dry electrode data

Wearable	devices	with	ECG	functionality	are	emerging	as	powerful	
tools to detect and remotely monitor cardiac abnormalities outside 
of a clinical environment.(Bouzid et al., 2022)	Such	devices	typically	
measure	the	heart's	electrical	signal	using	a	dry	electrode	single-	lead	
ECG	setup.	However,	data	collection	on	dry	electrode	ECG	wearables	

F I G U R E  2 Overview	of	data	from	wet	electrode	databases

Bittium Faros 180ittiuBi umm F 18os 880aroF

48 x 30 min 

12 x 30 min

Channel I only
18 x 1440 min

23 x 600 min

78 x 30 min

Recording
LengthDatabase Challenge of DatabaseNature of Data

Healthy patients with
no significant arrhytmias

Hospital patients attending 
an arrhythmia clinic

Patients diagnosed with
atrial fibrilation 

Artificial noise added to records
118 and 119 of the MIT-BIH DB

Mixture of patients with
arrhythmias and normal ECGs

83,978 

21,462

1,722,008

1,081,882

177,317

Annotated 
Beats

Various beat types 

Variety of rhythms, morphology, and 
signal quality. Including complex

  ventricular, junctional, and 
supraventricular arrhytmias and 

conduction abnormailities

A variety of healthy ECG data, cardiac 
arrhytmias and other conditions. 
Includes PVCs ventricular bi- and 

trigeminy,ventricular couplets, 
PVCs, VT, and VF   

Patients diagnosed 
with atrial fibrilation 
(mostly paroxysmal)

Challenging ECGs with
varying signal-to-noise 

levels

+

-
MIT-BIH DB

MIT-AF DB

AHA DB

NST DB

NSR DB

20 x 2.5 min Proprietary wet electrode data 
collected on healthy patients3,256 Gold standard ambulatory

Holter monitor 

TA B L E  1 Performance	of	HeartKey	on	wet	electrode	databases

Measurement NSR DB MIT- BIH DB AHA DB MIT- AF DB NST DB
Bittium 
faros 180

Detected Beats 1,719,427 82,996 173,117 1,075,071 20,000 3521

False Positives 10,134 111 618 28,315 2141 12

False Negatives 2581 982 4200 6811 1462 5

QRS	Average	Se	(%) 99.84 98.96 97.43 99.38 93.26 99.86

QRS	Average	PPV	(%) 99.40 99.86 99.60 97.37 90.53 99.66

RMS	HR	Error	(%) 1.09 1.93 5.42 3.21 19.42 0.61
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is inherently more challenging for two reasons: the positioning of 
the wearable device at peripheral locations on the body, such as the 
wrist or hands, can lead to a reduction in signal amplitude, whereas 
the increased impedance given by dry electrodes leads to enhanced 
noise interference. Prior to an effective signal processing step, the 
combined	issues	produce	data	in	which	the	relevant	ECG	waveforms	
are	buried	under	noise.	The	lack	of	redundancy	in	single-	lead	ECG	
signals further stresses the need for accurate and reliable signal 
processing algorithms to extract the maximum amount of diagnostic 
information	from	challenging	ECG	traces.

To	demonstrate	the	broad	applicability	of	HeartKey	signal	con-
ditioning	and	QRS	detection	algorithms,	ECG	data	was	collected	on	
a range of dry electrode devices. The collected datasets contain 
various	 challenging	 single-	lead	 ECG	 signals,	 including	 those	 with	
high	frequency	noise,	motion	artifacts,	low	QRS	amplitude,	irregular	
beats, and irregular rhythms to represent real- world dry electrode 
data as closely as possible (Figure 3).

HeartKey	QRS	detection	algorithm	displayed	strong	performance	
on the range of dry electrode use cases, with an average QRS Se and 
PPV	of	99.13%	and	99.00%	over	the	six	tested	databases	(Table 2).	
The highest QRS detection performance was observed with the 
chest	module,	with	an	average	QRS	Se	of	99.95%	and	PPV	of	99.94%.	
This is unsurprising as the large dry electrode surface area ensures 
continuous	contact	with	the	skin.	As	the	device	is	securely	strapped	
in place, there is also less electrode- skin contact movement; and 
therefore, fewer noise artifacts. The proximity of the device to the 
heart also allows a high amplitude QRS to be recorded. This hardware 
is a stark contrast to prototype wristwatches 1 and 2, which feature 
dry electrodes with smaller surface areas located at a peripheral site 
on	 the	body	 (wrist),	 resulting	 in	a	 low	amplitude	ECG	 that	 is	more	
prone	 to	noise	contamination.	Despite	 these	challenges,	HeartKey	

achieved QRS Se (>99.54%)	and	PPV	(>98.29%)	on	both	tested	pro-
totype wristwatches. The steering wheel similarly suffers due to 
the	proximal	location	of	data,	its	data	collection	(hands/fingers)	and	
as	subjects	are	required	to	grip	the	wheel	in	an	unsecured	manner,	
there is inevitable noise contamination from muscle contractions and 
the	moving	electrode-	skin	interface.	Average	QRS	Se	and	PPV	val-
ues	of	99.29%	and	99.07%	were	achieved	despite	these	difficulties.	
The most challenging dry electrode datasets in Table 2 are arguably 
those	collected	with	the	handheld	ECG	device	 (Entries	1	&	2).	The	
electrode- skin contact site for these use cases is at the extremity of 
the	body	(fingertips),	resulting	in	a	low	ECG	amplitude.	To	add	further	
difficulty, the datasets were also collected on unhealthy patients and 
contain	various	arrhythmias	and	ectopic	beats.	HeartKey	achieved	
QRS	Se	of	97.98%	and	98.14%	and	QRS	PPV	of	99.30%	and	98.65%	
on	handheld	ECG	device	entries	1	&	2,	respectively.

3.3  |  HeartKey performance on Motion- Based dry 
electrode data

Diagnosing intermittent cardiac arrhythmias is a challenge. These 
arrhythmic	episodes	can	occur	infrequently	and	unpredictably,	and	
they	generally	require	prolonged	and	repeated	cardiac	monitoring	to	
be	successfully	detected.(Heidt	et	al.,	2016)	Performing	this	requires	
the development of reliable and clinically safe ambulatory monitor-
ing methods. To maximize patient compliance and obtain real- world 
ECG	data,	the	chosen	hardware	device	needs	to	be	discreet,	 light-
weight, and unobtrusive so the patient can continue as close to as 
possible	an	uninterrupted	daily	 life	routine.	However,	 this	 require-
ment	needs	to	be	balanced	against	maximizing	data	quality	to	ensure	
that false positives and negatives are eliminated as much as possible.

F I G U R E  3 Overview	of	data	from	dry	electrode	databases

Recording
LengthHardware AimsAnnotated 

Beats
Lead
Setup

Subject
Type Overview

Chest Module 12 x 1 minMCLI + Lead I 4,871Healthy
Stress-inducing protocol

including mental arithmetic
and presentation tasks

Perfromance during 
stress tests at variable

heart rates

Steering Wheel 31 x 1 minLead I 1,848Healthy Stationary recording on
steering wheel electrodes

Perfromance on lower
quality dry electrode 

collection device

Wristwatch 
Prototype 2 Lead I 822Healthy

Stationary recording on 
wearable prototype 

wristwatches 

Perfromance on data
from low ECG amplitude

wristwatches
15 x 1 min

Wristwatch 
Prototype 1 Lead I 983Healthy 15 x 1 min

e

P

te

W

StS

Lead I 55 x 30-60 s 1,549 Handheld ECG
Entry 1 Unhealthy

Stationary recording of 
patients with tachycardia,

bradycardia, atrial fibrillation 

Perfromance on  
dry electrode data

containing arrhytmias

Lead I 214 x 30-60 s 6,739Handheld ECG
Entry 2 Unhealthy

Stationary recording of 
patients with ectopic beats

Perfromance on  
dry electrode data

containing ectopic beats
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Wearable	 dry	 electrode	 ECG	 setups	 are	 ideal	 for	 discreetness	
and	allow	patients	 to	maintain	 regular	daily	 routines.	For	 the	ECG	
functionality within the wearable device to be of clinical value, the 
algorithms must be capable of maintaining a high performance across 
the spectrum of motion- based scenarios the patient will enact each 
day—	such	as	walking	or	exercising—	which	will	 invariably	alter	ECG	
signal	quality.	The	performance	of	HeartKey	algorithms	was	investi-
gated	on	internally	collected	ECG	data	recorded	on	consumer-	grade	
chest	 strap	 electrodes	 (MCLI)	 during	 two	motion-	based	 protocols	
(Table 3).	In	the	first,	subjects	were	instructed	to	walk	on	a	treadmill	
(6	km/h)	for	4	min.	In	the	second	protocol,	after	an	initial	warm	up	
period, subjects were asked to run on a treadmill at increasing speeds 
(subject	dependent)	over	4	min.	As	expected,	the	raw	ECGs	are	of	
poor	quality,	suffer	from	frequent	baseline	wander,	and	contain	large	
amounts of noise artifacts arising from dry electrode- skin contact 
movement	and	patient	muscle	activity.	HeartKey	signal	processing	
and QRS detection algorithms performed well on these challenging 
datasets,	achieving	a	QRS	Se	and	PPV	of	99.09%	and	98.15%	during	
the	walking	 protocol	 (Entry	 1),	 and	 a	QRS	 Se	 and	PPV	of	 99.86%	
and	99.87%	during	the	running	protocol.	Although	the	performance	
was expected to be lower during the running protocol due to the 
increased levels of motion, the opposite was observed. The buildup 
of sweat at the electrode- skin interface during the running protocol 
could explain the results, as this would lead to greater conductance 
and	essentially	allow	it	to	act	as	a	wet	electrode.	HeartKey's	ability	
to	improve	the	quality	of	dry	electrode	ECG	data	without	interrupt-
ing	the	patient's	daily	routine	will	facilitate	clinical-	grade	ambulatory	
monitoring, hugely enhancing the breadth and depth of available di-
agnostic hardware and improving their performance both in and out 
of hospital settings.

4  |  CONCLUSION

The	ability	of	ECG	signal	conditioning	algorithms	to	achieve	relatively	
high performance on wet electrode databases for which they have 
been	optimized	 or	 trained	 is	 not	 uncommon.	However,	most	 ECG	
signal conditioning algorithms lack universality and are incapable of 
maintaining the same high level of performance over multiple data-
bases and use cases, limiting their application. We have shown that 
HeartKey	is	a	crucial	tool	 in	pursuing	a	universal	approach	to	ECG	
signal conditioning, showing accurate and reliable QRS detection 

performance across a broad range of clinically relevant datasets. It 
should	again	be	emphasized	that	HeartKey	algorithms	required	no	
learning phases, and in no way have been adjusted to perform better 
on	the	tested	databases.	As	with	many	clinical	ECGs,	 the	data	are	
there,	but	the	signal	can	be	of	poor	quality	and	hidden	under	a	range	
of	noise.	Prior	to	the	development	of	high-	quality	signal	condition-
ing, these data were lost or not actionable. Patients and clinicians 
could go through multiple repeated investigations, extended periods 
of monitoring or, in some cases, the condition could be overlooked 
until a more catastrophic cardiac event occurs. Effective signal con-
ditioning	with	HeartKey	allows	clinicians	 to	extract	 the	 right	data,	
making the crucial intervention without repeated investigations.
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