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Background: Technological advances have led to electrocardiograph (ECG) functionality becoming increasingly 
accessible in wearable health devices, which has the potential to vastly expand the clinician’s ability to monitor, 
diagnose, and manage cardiac health conditions. However, achieving the high signal quality necessary to make 
an accurate and confident diagnosis is inherently challenging on consumer device-acquired ECGs. Effective signal 
conditioning is crucial to make ECG data from wearable devices clinically actionable. 
Objective: This study evaluates the heart rate (HR) performance of ECG data collected on the HeartKey® Test 
Watch, a single lead, dry electrode wrist wearable, against data acquired on two criterion devices: the Bittium® 
Faros 180, a gold standard wet electrode ambulatory monitoring device, and the HeartKey Chest Module. 
Methods: ECG data was simultaneously acquired on three devices during a multi-stage protocol (sitting, walking, 
standing) designed to reflect the motion noise of real-life scenarios. Raw ECGs from the HeartKey Test Watch and 
HeartKey Chest Module were processed through HeartKey software, and the accuracy of the outputted heart rate 
data was compared to that of the criterion device at each stage of the protocol. A beat rejection analysis was 
performed to provide insight into the degree of high-frequency noise present in ECGs recorded on the HeartKey 
Test Watch. 
Results: Data acquired on the HeartKey Test Watch and processed by HeartKey software generated HR metrics 
that closely matched that of the criterion devices throughout the protocol. Bland-Altman analysis showed a mean 
absolute HR difference of 0.74, 1.21, 0.80 bpm during the sitting, walking, and standing stages respectively, 
which is within the ± 10% or ±5 bpm range required by ANSI EC13. ECG data from the HeartKey Test Watch 
had a higher beat rejection rate relative to the HeartKey Chest Module (8.5% vs ~0%) due to the excessive high- 
frequency noise generated during the motion-based protocol. 
Conclusion: HeartKey software demonstrated highly accurate HR performance, comparable to that of the criterion 
Faros device, when processing challenging ECG data acquired on a single lead, dry electrode wrist wearable 
during both non-motion and motion-based protocols.   

Introduction 

The integration of ECG functionality into everyday consumer devices 
is transforming our approach to cardiac healthcare. By continuously 
monitoring heart function over extended periods of time, wearable de
vices generate a plethora of diagnostic data that can be called upon 
when needed [1]. Access to such pre-existing ECG data saves both time 
and resources for the clinician. Given the mounting clinical burden 
facing global healthcare in the post-COVID-19 era, this approach is 
incredibly valuable [2]. Additionally, as wearable ECG devices are 

unobtrusive and typically offer superior user comfort relative to the 
Holter devices typically employed for out-of-hospital heart monitoring 
[3], they are ideal for the detection and long-term periodic monitoring 
of transient arrhythmias, such as atrial fibrillation, which manifest 
infrequently and inconsistently. 

However, extracting actionable clinical data from consumer device- 
acquired ECGs is challenging for two reasons. Firstly, the increased 
impedance of a dry electrode device leads to greater noise interference. 
Secondly, if the device is to be worn at peripheral locations on the body, 
such as the wrists or hands, the amplitude of the resulting ECG signal 
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will be low. Combined, these issues produce data in which the diag
nostically relevant ECG waveforms can be buried under noise. Effective 
signal conditioning software capable of removing this excessive noise is 
vital in unlocking the clinical value of user-collected data [4,5]. 
Although numerous ECG wrist wearables and their accompanying soft
ware have been reported to effectively process acquired data to output 
accurate ECG health metrics, they require the user to remain stationary 
during the collection protocol to minimize motion artefacts, which 
significantly limits the everyday utility of the technology [6–8]. In this 
study, we highlight the ability of HeartKey Signal Processing algorithms 
to extract high-quality data from challenging ECGs collected on a dry 
electrode wrist wearable during non-motion and motion-based 
protocols. 

Materials and methods 

Overview of ECG hardware 

ECG data was simultaneously collected on three different devices 
during the testing protocol. The HeartKey Chest Module, a single lead, 
dry electrode ECG device, was securely strapped to the subject’s torso in 
a configuration akin to that of the Angle of Louis electrode placement 
used in 12‑lead ECG recordings. The HeartKey Test Watch, a single lead, 
dry electrode wrist wearable, was fitted to the subject’s left wrist. Bit
tium® Faros 180, an FDA 510(k) cleared, CE marked class IIa medical 
device, was set up in a lead II position using Ambu® BlueSensor wet 
electrodes to enable the acquisition of a high-quality chest ECG signal 
(Fig. 1). A Holter device is considered the industry gold standard for 
ambulatory ECG monitoring, and in this case, we utilised the Faros 
Holter device as the criterion. The HeartKey Chest Module acted as an 
extra reference device from which the performance of the HeartKey Test 
Watch could be compared. 

Multi-stage ECG collection protocol 

The data collection protocol was designed to evaluate the perfor
mance of the wearable devices when subjected to differing levels of 
induced motion artefacts, which will invariably effect ECG signal quality 
and the algorithms’ ability to extract accurate health metrics. The active 
testing protocol lasted a total of 4 min per subject and was divided into 
four distinct stationary or motion-based phases performed consecu
tively, consisting of; i) 1-min resting baseline while sitting upright, ii) 1- 
min light walk at 3 km/h, iii) 1-min brisk walk at 4 km/h, and iv) 1-min 
resting recovery while standing. A ProForm Performance 750 treadmill 
was used to maintain control over the subject’s walking speed. The 
timing of each activity was strictly enforced to ensure that the datasets 
acquired from each subject were directly comparable and that the sub
jects did not undergo any excess, unnecessary strenuous activity. 

Subjects wore the devices while the protocol was explained to allow for a 
short settle time. 

Study population and exclusion criteria 

A total of 14 participants were recruited for this study, 7 males and 7 
females, with an age range of 20–42 years. Details of the testing protocol 
were fully disclosed to each subject prior to their participation in the 
study. Exclusion criteria included subjects with allergies to plasters, 
pregnant women, those with pre-existing heart conditions, and those 
under the age of 18. 

Data processing 

Data collected on the Bittium Faros 180 was processed using the 
embedded Faros software, generating an R-R interval series which is 
then fed into the HeartKey Heart Rate algorithm to generate a HR 
output. Data acquired on the HeartKey Chest Module and HeartKey Test 
Watch was streamed through the HeartKey software, which contains 
several distinct stages designed to autonomously process and interpret 
raw ECG data and output several useful ECG metrics (Fig. 1). To ensure 
robust algorithm performance across different hardware sources, the 
initial filtering step uses a combination of low- and high-pass filters to 
remove a broad range of noise artefacts, including baseline wander, 
muscle activity, respiration, and powerline interference. The condi
tioned ECG signal is then passed through the HeartKey QRS Detection 
algorithm. Upon successful identification of QRS locations, an R-R in
terval series is calculated and inputted into the HeartKey Heart Rate 
algorithm. HR is calculated over a moving median window of nine R-R 
intervals in real time. As standard QRS accuracy measurements employ a 
wide error window (+/− 150 ms), the precise location of detection 
within the QRS complex is not important, only that this location remains 
consistent from beat-to-beat. Looking at this in isolation could mask 
variation in where the algorithm picks up the beat. Therefore, perfor
mance was evaluated between devices using HR metrics. HeartKey 
provides an indicator of ECG signal quality and will only generate a HR 
value if the signal is deemed to be of sufficient quality. 

Results 

Throughout each stage of the testing protocol, the HR performance of 
ECG data collected on the HeartKey Test Watch and processed using 
HeartKey software closely matched that of the criterion Faros device 
(Fig. 2). 

HR data was derived from the Faros R-R series and compared to the 
HeartKey Test Watch HR data using Bland-Altman analysis. Bland- 
Altman analysis evaluates mean difference bias between two inputs 
and estimates an agreement interval within which 95% of future 

Fig. 1. Configuration of the three devices used in this study and the flow of ECG data through the corresponding algorithms to generate a HR output.  
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differences between the two inputs shall fall. Reported confidence in
tervals (CIs) are that of the absolute mean difference between HR 
generated on the criterion Faros device and the HeartKey Test Watch. 
Table 1 provides a statistical overview of the Bland-Altman analysis. 

Sitting baseline analysis 

During the sitting baseline period, the HeartKey Test Watch had an 
Absolute Mean HR difference of 0.74 bpm relative to the Faros device 
and a Mean Absolute Percentage Error (MAPE) of 1.31% when averaged 
across all subjects. The narrow CI range on the Bland-Altman plot of 
− 2.89 bpm to 1.70 bpm further highlights the close performance of the 
two devices. 

Walking and standing recovery analysis 

Over both walking periods, the relative performance of HeartKey 
Test Watch data is slightly poorer when compared to the sitting protocol, 
although still well within the ±10% or ±5 bpm range required by ANSI 
EC13. The HeartKey Test Watch had an Absolute Mean HR difference of 
1.21 bpm and a MAPE of 1.17% averaged over the entire subject cohort. 
Bland-Altman analysis revealed a larger CI range of − 5.60 to 3.19 bpm. 
Fig. 3 shows the difference in signal quality for ECG data acquired and 

processed on the Faros device to ECG data acquired on the HeartKey Test 
Watch and processed with HeartKey software during the walking phase. 
It should be noted that Faros peak annotations were taken directly from 
the device (i.e., not generated by the HeartKey QRS Detection algo
rithm), hence, the peak location may not be exactly on the R peak. 
During the standing recovery period, the HR performance of HeartKey 
Test Watch data improved, with an Absolute Mean HR difference of 
0.80 bpm, a MAPE of 1.43% when averaged across all subjects and a 
decreased CI range (− 3.72 to 2.36 bpm) relative to the walking phases. 

Discussion 

Accurate and reliable QRS detection is fundamental as this serves as 
the basis from which more complex HeartKey algorithms operate, 
including HR, Heart Rate Variability (HRV), Physiological Stress, and 
Arrhythmia Analysis. An ECG signal that has retained a high degree of 
noise after conditioning can therefore have a significant impact on the 
generation of downstream HeartKey metrics. HeartKey software em
ploys adaptive morphology-based selection parameters and proprietary 
measurements of noise to appraise the quality of each individual beat 
and will only allow HeartKey to generate a HR value if it is deemed to be 
of sufficient quality (i.e., a correct QRS morphology not severely 
contaminated by noise). Table 2 shows the number of beats rejected by 

Fig. 2. HR trend comparison of the HeartKey Test Watch and the criterion Faros device through the various phases of the protocol for a single participant (S054).  

Table 1 
HR data results divided per testing section for the entire subject cohort (N = 14). Separate walking periods were analysed together for simplicity.  

Protocol Device Min HR 
(bpm) 

Max HR 
(bpm) 

Mean HR 
(bpm) 

SD Absolute Mean Difference 
(bpm) 

Mean Lower CI 
Range 

Mean Upper CI 
Range 

Sitting Baseline Bittium Faros 180 54 103 78 13.5 0.74 − 2.89 1.70 
HeartKey Chest 
Module 

52 103 78 13.7 

HeartKey Test 
Watch 

52 103 77 13.5 

Walking (3-4 km/ 
h) 

Bittium Faros 180 78 129 101 13.9 1.21 − 5.60 3.19 
HeartKey Chest 
Module 

77 128 100 13.9 

HeartKey Test 
Watch 

77 127 100 13.5 

Standing 
Recovery 

Bittium Faros 180 72 114 96 15.8 0.80 − 3.72 2.36 
HeartKey Chest 
Module 

71 113 96 15.6 

HeartKey Test 
Watch 

71 113 95 15.5  
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HeartKey throughout each stage of the protocol due to elevated signal 
noise. As data from Faros device was processed using embedded Faros 
software and does not provide beat rejection analysis, the HeartKey 
Chest Module was used as the criterion for this assessment. 

Being securely strapped to the torso, ECG data collected on the 
HeartKey Chest Module has a larger signal amplitude and is less prone to 
motion-derived noise artefacts, resulting in high signal quality and only 
a single noise-rejected beat throughout the entire collection protocol. 
Conversely, the optimal protocol for ECG acquisition on the HeartKey 
Test Watch involves the subject sitting in a stationary position while 
placing the thumb and forefinger of their right hand on the face of the 
watch in a more uncontrolled manner. This leads to considerably greater 
motion-derived signal noise which, in combination with the low wrist 
ECG amplitude, makes it difficult to differentiate a QRS complex from a 
noise artefact. The lowest percentage number of rejected noise beats 
(3.4%) was observed during the sitting protocol, as would be expected. 
The enhanced motion during walking phases led to more than a 3-fold 
increase in the percentage of noise-rejected beats. Upon returning to a 
stationary position, the percentage of rejected beats again decreased 
from 10.9% to 8.4%. Over the whole protocol, a total beat rejection rate 
of 8.5% was observed. 

Conclusion 

In this small-scale pilot study (N = 14), ECG data acquired on the dry 
electrode, Lead I HeartKey Test Watch and processed using HeartKey 
software displayed analogous HR performance relative to the Bittium 
Faros 180 – an industry standard wet electrode, Lead II ambulatory 
monitoring device. Bland-Altman analysis showed that throughout the 
entire testing protocol, featuring several scenarios intended to reflect 
real-life use, the absolute mean HR difference between devices was small 
(0.74 bpm (sitting), 1.21 bpm (walking), 0.80 bpm (standing)). Pro
cessed data collected on the HeartKey Test Watch performed to a high 
standard in most subjects. In several subjects, particularly those with a 
low wrist ECG amplitude, the signal quality was poor at times. An 
average of 8.5% of HeartKey rejected beats were observed for the 
HeartKey Test Watch, whereas the HeartKey Chest Module had ~0%, 
which is to be expected from the less-stable wrist-based ECG. Although 
signal quality decreased during the walking phase of the protocol, 
HeartKey’s ability to correctly reject noise artefacts prevented the HR 
algorithm from using these as inputs, enabling accurate HR performance 
to be maintained. 

Fig. 3. Walking phase ECG data of participant S026; (a) acquired on the Faros device and processed using the embedded software (annotated R peaks generated by 
Faros software), and (b) acquired on the HeartKey Test Watch and processed through HeartKey Software (includes a filtering step). Beats rejected by HeartKey due to 
insufficient quality are shown. 
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Fig. 3. (continued). 

Table 2 
The number of HeartKey rejected beats observed for the full study cohort (N =
14) throughout the collection protocol due to poor signal quality for the 
HeartKey Chest Module and The HeartKey Test Watch.   

HeartKey Chest Module HeartKey Test Watch  

Sitting Walking Standing Sitting Walking Standing 

Total Beats 
Detected 

1013 2634 1226 923 2535 1217 

Noise Beats 
Rejected 

0 1 0 32 267 100 

Mean % of 
Beats 
Rejected 

0 ~ 0 0 3.4 10.9 8.4  
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